微信公众号
免费顾问咨询
井澜留学以一流的实力、专业的态度、精确的服务,帮助每一位前来咨询以及寻求帮助的家长和学子。
020-86160760
info@stepwayedu.com
数学专业是基础性专业,如果能学下去是个发展前景很不错的专业。学生在没想好学什么专业,在数理方面又比较好的情况下,学习数学专业是很不错的选择。到了研究生的时候,学数学专业的朋友可能需要选择一个比较细的研究方向,那有什么方向可以选择呢?今天我们 来看一看研究生数学专业有哪些选择,又有哪些出路呢。
大热应用数学
应用数学(Applied Mathematics)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。
多元应用分析数学
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
基础中的基础-基础数学
基础数学也叫纯粹数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。
计算机科学基础的离散数学
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
古老的数学研究-代数研究
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。初等代数是更古老的算术的推广和发展。
与哲学相关的逻辑学
逻辑(英语:logic,或称为理则、论理、推理)是有效推论的哲学研究。逻辑学-就是研究规律性事物的一门学科。逻辑被使用在大部份的智能活动中,但主要在哲学、数学、语义学和计算机科学等领域内被视为一门学科。逻辑讨论逻辑论证会呈现的一般形式,哪种形式是有效的,以及其中的谬论。在哲学里,逻辑被应用在大多数的主要领域之中:形而上学、本体论、知识论及伦理学。在数学里,逻辑是指研究某个形式语言的有效推论。
如果想了解更多有关数学读研的方向,欢迎进入井澜留学官网进行咨询吧!
免责声明:文章部分内容来源于百度等常用搜索引擎,我方非相关内容的原创作者,也不对相关内容享有任何权利 ;部分文章未能与原作者或来源媒体联系若涉及版权问题,请原作者或来源媒体联系我们及时删除!